Cesàro Summability Involving $\delta$-Quasi-Monotone and Almost Increasing Sequences

نویسندگان

چکیده

This paper generalises a well-known theorem on ${\mid{C},\rho\mid}_\kappa$ summability to the $\varphi-{\mid{C},\rho;\beta\mid}_\kappa$ of an infinite series using almost increasing and $\delta$-quasi monotone sequence.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Quasi–monotone and Almost Increasing Sequences

In this paper, a theorem of Bor and Özarslan [3] dealing with | C,α; β |k summability factors has been generalized for | C,α, γ ; β |k summability methods.

متن کامل

A new application of almost increasing and quasi-monotone sequences

In this paper a general theorem on absolute weighted mean summability factors has been proved under weaker conditions by using an almost increasing and δ-quasi-monotone sequences.

متن کامل

A New Note on Almost Increasing and Quasi Monotone Sequences

In [22], we proved a main theorem dealing an application of almost increasing and quasi monotone sequences. In this paper, we prove that theorem under weaker conditions. We also obtained some new and known results.

متن کامل

A summability factor theorem for absolute summability involving almost increasing sequences

A triangle is a lower triangular matrix with all principal diagonal entriesbeing nonzero. Given an almost increasing sequence {Xn} and a sequence {λn} satisfying certain conditions, we obtain sufficient conditions for the series ∑ anλn to be absolutely summable of order k ≥ 1 by a triangle T . As a corollary we obtain the corresponding result when T is a weighted mean matrix. Theorem 1 of this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of new theory

سال: 2022

ISSN: ['2149-1402']

DOI: https://doi.org/10.53570/jnt.1185603